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Dipartimento di Fisica dell’UniversitA, 43100 Parma, Italy 

Received 11 October 1993, in final form IO January 1994 

Abstract Commensurate-commensurare phase transitions are known to occur in the king 
model with competing interactions (m d e l ) .  We show that an analogous scenario may 
occur in spin Hamiltonians with continuous symmetry and competing interactions when an 
e x m a l  magnetic field is applied. In p&icular we study a planar square lattice with exchange 
competition up to third neighbow. We consider exchange competition suitable for giving a 
zero-temperature-zerc-field configuration characterized by a spin-spin t u n  angle Q = 4n/5. In 
c o n m t  with previous conclusions. based on the hypothesis that the unit mametic cell does not 
change under the effect of an extmal magnetic field, we find discontinuous phase m i t i o m  
between a distorted-helix phase (with five spins per cell) and the spin-Eop phase (with two 
spins per cell) and between the spin-Bop phase and a fan phase (with five spins per cell). This 
behaviour seem to be a general rule for large enough Q as confirmed by the helix with a hun 
angle Q = 6n/I in zero field. 

1. Introduction 

A sequence of different commensurate spin configurations is established by suitable 
exchange competition in the axial next-nearest-neighbour king (-1) model [l]. Non- 
simple spin configurations are also found in simple spin Hamiltonians with continuous 
symmetry such as the planar and Heisenberg model. This scenario is caused by either 
a sufficiently strong exchange competition [2] or the lattice structure [3]. Note that for 
classical models helix spin configurations exhaust the minimum-energy configurations 141. 
The scenario is even richer when an external magnetic field is applied because. of the 
competition between the field, which favours a collinear configuration, and the frustration, 
which favours a h e l i  configuration. Frushation can be induced by competing exchange 
interactions or by the lattice structure as occurs in hiangular, hexagonal, and rhombohedral 
antiferromagnets 131. In both cases a number of well grounded results has been achieved. 
An exact low-temperature-low-field expansion of the free energy [5] for the planar model 
shows that helix configurations commensurate with the underlying lattice are locked by non- 
analytic delta-like contributions proportional to HP where H is the extemal magnetic field 
and p is the number of spins per unit magnetic cell. Minimization of the zero-temperature 
energy under the hypothesis that the magnetic cell is unaffected by the field [6] suggests a 
first-order phase transition between the low-field (distorted-helix) phase and the high-field 
(fan) configuration when the zero-field spin-spin turn angle Q is less than x/2,  whereas a 
continuous distortion of the helix into the fan is suggested for Q > x/2. This picture seems 
to be supported by the exact solution of the planar linear chain in an external magnetic 
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field obtained by the transfer matrix method [7] and by Monte Carlo (MC) simulations on 
the planar (finite size) square lattice [6,8]. However, the calculation of the elementary 
excitation energies for competing interactions that stabilize a helix with a spin-spin turn 
angle Q = 4n/5 at zero field undergoes unexpected instabilities. Indeed one branch of the 
excitation energy softens in the neighbourhood of the zoneboundary wave vector for a wide 
range of applied magnetic fields. This is the signature of the onset of a new commensurate 
configuration with two spins per unit magnetic cell. Indeed we have found that for a finite 
range of fields HI < H < H2 the spin-flop phase has an energy lower than both the 
distorted helix and fan configurations. Moreover the elementary excitations in the spin-flop 
phase are well defined in that range of fields. In order to test whether this scenario is a 
general rule for any Q close to n we have studied the minimum energy configuration for an 
exchange competition that supports a commensurate helix with Q = 6n/7 in zero magnetic 
field. We find also in this case distorted-helix, spin-flop, and fan configurations connected 
by first-order phase transitions. 

We revise our previous conclusions based on analytic calculations at zero temperature 
with the hypothesis of a fixed magnetic cell, as well as numerical results at finite temperature, 
where no evidence of any phase transition between spin configurations with different 
commensurate magnetic cells was found for Q z a12 [6,7]. We realize that this is probably 
due to the the low temperature range in which the transitions occur. Note that even at zero 
temperature the magnetization discontinuities at the transitions are very weak. It is well 
known that both the numerical solution of the transfer matrix integral equation for the linear 
chain [7] and the MC simulation for the square lattice [6,8] become unreliable at very low 
temperature. On the other hand, in the temperature range where the numerical methods 
are efficient the trace of discontinuous helix-spin-flop and spin-flopfan phase transitions 
is hardly recognizable. Instead of looking at the magnetization, which undergoes weak 
discontinuities at the transitions, we think that the static structure factor is a more sensible 
probe. Indeed when the distorted helix-spin-flop transition occurs a peak at q = (4nj5,O) 
disappears and a peak at q = (n, 0) appears. These peaks, however, are broad in I D  [7] 
where thermal fluctuations severely s e c t  them. Early MC simulations on samples of 25x25 
spins with periodic boundary conditions [6] did not show any new peak at q = (rr, 0) in 
the static structure factor at increasing magnetic field as one would expect if the spin- 
flop phase intervened. However, the reason has to be traced back to the bad choice of 
sample dimensions, which were not suitable for allowing dimerization of the spin patterns. 
Therefore, we have considered samples of 50x50 spins and transition between an ordered 
phase with five spins per cell singled out by a peak at q = (41115.0) in the static structure 
factor, and a spin-flop phase characterized by a peak at q = (IC, 0) has been recognized. 

In section 2 we compare the energies of the various configurations evaluated analytically 
for Q = 4n/5 and Q = 6x17. We give the elementary excitation energies of the various 
stable phases for Q = 4 ~ 1 5 .  In section 3 we give the finite-temperature thermodynamics 
obtained by numerical results from MC simulations. Section 4 contains a summary and 
conclusions. 

2. Distorted-helix, symmetric fan and spin-flop phases 

We consider a planar square model with nearest-neighbour ferromagnetic coupling ZJI > 0, 
next-nearest-neighbour coupling 252, and third-nearest-neighbour coupling 253. The model 
Hamiltonian reads 

(2.1) ‘H = -Ji Z S i  *&+a, - J z C S i  .Si+&, - 3 X S i  * Si+& - /L CH. Si 
i.61 i d 2  i.6, i 
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Figure 1. (a) A unit magnetic cell with five spins suitable for describing lhe distorled-helix 
phase with h = hl = 0.334; (b) lhe spin-flop phase for h = 1; (c) the symmetric-fan phase for 
h = hz = 1.419. 

where Si is a two-component unit vector and p is the magnetic moment per lattice spin. The 
zero-temperature-zfield phase diagram in the plane spanned by the reduced exchange 
couplings j 2  = 52/51 and j 3  = J3/J1 is shown in figure 1 of reference [2]. We focus on the 
line 1 + 2j2 = -4j3 cos(4n/5). where the minimum-energy configuration is a regular helix 
characterized by a wave vector Q = (4n/5,0). This commensurate helix configuration with 
five spins per unit cell is expected to be unaffected by the field [5], at least in the low-field 
range. Under this assumption a direct calculation of the minimum energy configuration can 
be performed for any field. Indeed the square lattice can be divided into five sublattices, 
each spin of which makes an angle @s (s = 1, ..., 5) with the external applied field. The 
minimum-energy configuration is then obtained by looking for the minimum of this function 
with respect to #+. The solution is a minimum-energy configuration with one spin of the 
unit cell parallel to the field and the other four spins symmetrically oriented with respect to 
the field. For instance, 41 = 0, & = -& 453 = -44, where & and 43 are solutions of the 
following system: 

(1 + 2j2) [sin $2 + sin(& - @3)] + j 3  [sin(h + &) + sin(%&)] + h sin & = 0 (2.2) 
(1 + 2 j d  [sin(%) + sin(& - &)I + j 3  [sin(& + 42) + sin&] + h s i n h  = 0 (2.3) 
where h = pHj2J1. The stable configurations given by (2.2) and (2.3) are shown in 
figure l(a) (distorted-helix phase) and in figure l(c) (fan phase). A similar calculation was 
performed on the Hamiltonian (2.1) for competing interactions leading to a helix wave 
vector Q = (2n/5,0) at zero field [PI. In that case a first-order phase transition between 
the distorted helix and the fan phase was found. In contrast with such a result no first-order 
helix-fan transition is found from (2.2) and (2.3) in the present calculation for Q = 4n/5. 
The change from the distorted helix to the fan configuration and, finally, to the saturated 
phase (reached at h, = -4j3 cos4n/5) occurs in a continuous way. The reduced energy of 
the above configurations as obtained from (2.2) and (2.3) is 
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This zero-temperature result, supported by numerical calculations performed at finite 
temperature on the linear chain [7] and on the square lattice [6,8], led us to the conclusion 
that no first-order phase transition occurs when the exchange competition supports spin 
helices with Q large enough. However, if we evaluate the elementary excitation 
energies accounting for small deviations away from the minimum energy configuration 
in Hamiltonian (2.1), unexpected results are obtained. For the choice j 3  = -0.125, j z  = 
-0.702 25 the lowest branch of the elementary excitation energy becomes negative about 
the zone-boundary wave vector q = (xf5.0)  over a wide range of magnetic fields 
(0.83 c h c 1.37) even though (2.4) is a minimum with respect to $#. The instability 
of the elementary excitation energies for 0.83 -= h c 1.37, singled out by a softening 
of a branch in the vicinity of the mne boundary, suggests that the actual minimum energy 
configuration in that range of fields has to be looked for in the manifold of dimerized phases 
such as, for instance, the spin-flop phase. In any case the Configuration with five spins per 
unit cell is not preserved over the whole range of magnetic fields. Assuming a spin-flop 
configuration where the spins make an angle 4 with respect to the external magnetic field 
as shown in figure I@), the energy one obtains from Hamiltonian (2.1) is 

with 

h 
cos 4 = - 

4(1+ 2jd' 

Table 1 gives e:) and ehsv as function of h for j, = -0.125 on the line 1 + 2j2 = 
-4 j s  cos4x/5. As one can see the spin-flop phase is stable in the range hl c h < hz.  where 
hl = 0.334 (e? = e f n  = -1.188984) and h2 = 1.419 (e? = ef" = -1.776664). 
The zero temperature uniform magnetization of the two phases is obtained by the usual 
thermodynamic relation mo = -(l/pN)aEo/aH. From (2.4) and (2.5) one obtains 

(2.7) mo (H) - - L 5(1 + 2 c o s ~ + 2 c o s ~ )  

and 

mf'  COS^. 

The magnetization as a function of the field is shown by the continuous curve of figure 2. 
The helix-spin-flop and spin-flopfan phase transitions are discontinuous even though the 
jumps in the magnetization are very small (Am = 0.048 at h = hl ,  and Am = 0.010 at 
h = hz ). The distorted helix, spin-flop, and fan phases are illustrated in figure 1. In order to 
test the stability of the spin-flop phase we have evaluated the elementary excitation energies 
of this phase and we have proved that they are positive over the range 0.192 c h c 1.607, 
which is wider than the range 0.334 c h c 1.419 where the spin-flop phase is stable. In the 
appendix details of the calculation of the elementary excitation energy for both the phase 
with five spins per cell and the spin-flop phase are given. The excitation energies of these 
phases are shown in figures 3 and 4 for selected values of the field. 

The static structure factor is much more affected than the magnetization by the transition 
because of a different location of the Bragg peaks in the helix and spin-flop phases. 
Moreover the intensity of the peak changes under the effect of an external magnetic field. 
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Table 1. A comparison between the energy (er') of the helix phase with five spins p r  unit 
cell and the energy (ef') of the spin-flop phase as a function of the external magnetic field for 
jl = -1 

h el? ef' 

8' 

0 -1.163627 -1.154508 
0.1 -1.165 841 -1.157 600 
0.2 -1,172534 -1.166869 
0.3 -1.183938 -1.182320 
0.4 -1.2C4662 -1,203951 
0.5 -1.223759 -1.231763 
0.6 -1.254294 -1.265755 
0.7 -1.292821 -1.305927 
0.8 -1.339307 -1.352279 
0.9 -1.393350 -1.404812 
1.0 -1.454413 -1.463525 
1.1 -1.521982 -1.528419 
1.2 -1595634 -IS99493 
1.3 -1.675045 -1.676747 
1.4 -1.759985 -1.763182 
1.5 -1.850286 -1.849 797 
1.6 -1.945830 -1.945592 
1.6363 -1.981763 -1.981 763 

Figure 2. The magnetization versus the magnetic field for j i  = -i: the analNc result at 
T = 0 (continuous cwe) :  MC simulation at T = 0.2 (diamonds) and T = 0.35 (crosses). 

The static structure factor, which is the spatial Fourier Wansfom of the static correlation 
function, is 

At T = 0, in the helix phase (five spins per cell) (2.9) reads 
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+ 2cos~zqx~[cos4  + 2COS(@Z + 411 
+ 2c0s(3qx)[ c o s 4  + COS(Z@z)] + 2c0s(4qx) c o s 4  

(2.10) 

with @z and 4 given by (2.2) and (2.3). In the spin-flop phase (2.9) becomes 

S(q,.q,) =% - z m ) ~ ( q ,  -2zn)$[1 +cosqxcos(2~)] (2.1 1) 

with @ given by (2.6); m, n are two integers. If we consider the first Brillouin zone of the 
underlying lattice, the Bragg peaks are located at the zone centre, at the helix wave vector 
q = (4r/5,0), and at q = (2zj5,O) when the magnetic unit cell has five spins, whereas 
the peaks are located at the zone centre and at q = (r, 0) in the spin-flop phase, as clearly 
shown by (2.10) and (2.11), respectively. In table 2 we give the intensity of the peaks as 
a function of the magnetic field. Note that the peak at q = (2n/5,0) is very weak over 
the whole range of fields and is rigorously zero for the regular helix configuration (h = 0). 
The peak at the zone centre, which is the square of the uniform magnetization, increases 
from zero to unity at increasing magnetic field. Like the magnetization, the intensity of 
the central peak undergoes two discontinuities at h = hl = 0.334 (distorted-helix-spin-flop 
transition) and at h = hz = 1.419 (spin-flopfan transition). The intensity jumps, however, 
are small (0.018 at h = h ,  and 0.017 at h = hz). The striking result is that the peak at the 
zone boundary in the spin-flop phase is replaced by a new peak at the helix wave vector 
in the helix or fan phase. At the transition coexistence of the two peaks should be found. 
Other useful parameters that can reveal the transition are the order parameters introduced 
in [IO] for the triangular lattice and extended in [SI to the present lattice. They read 

(2.12) 

(2.13) 

These parameters are suitable for describing a 'staggered magnetization' in the helix or 
fan phase. They vanish in the spin-flop phase. The dramatic effect on these parameters 
caused by the occurrence of the spin-flop phase is shown by the continuous curves of 
figure 5. Dotted curves show the same parameters when the transition to the spin-flop 
phase is ignored. 

In order to support OUT suggestion about the occurrence of the spin-flop phase in the 
intermediate range of h for large enough Q we have investigated the helix with Q = 6n/7 
which is stable at zero field and zero temperature on the line 1 + 2jz = -4j3 cos 6n/7. The 
energy for the configuration with seven spins per unit magnetic cell reads 

e? = -+{(I  + 2 j z ) [ 2 c o s ~ + 2 c o s ( ~ - 4 ) + ~ c o s ( 4  -44)+cos(w4)1 

+ 7(1 + j3) + j 3  12 c o s 4  + 2cos(@z - @4) + ZCOS(@~ + 44) + cos(W~)l 

+ h ( l + 2 c o s @ z + 2 c o s ~ + 2 c o s @ 4 ) ]  (2.14) 
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h=O h=h,=0.334 h=h,=1.419 

-- 
01 a a 

0 0.Z 0.6 0.6 D d  I 0 0 1  0.4 D d  0.8 I 

d s z s  (1.0) 

Figure 3. The dispersion curve in the (1.0) direction for the helix and fan phases for h = 0, 
h = hl = 0.334, and h = hz = 1.419. 

h=h,=0.334 

0.4 ~ 

I) (I2 a, 0,s OB I 
0.0 

h=1.0 

Dd 

e/% (1.0) 
Figure 4. The dispersion curve in the (LO) direction for the spin-flop phase for h = hl = 0.334, 
h = 1. and h = hz = 1.419, 

where '$1 = 0, & = -47, & = -46, $4 = -43 are the angles the seven spins of the 
unit cell make with the field. $2, &, 6 4  are obtained by solving numerically the following 
equations: 

(2.15) (1 + 2j2) [sin& + sin(& -&)I  t j3 [sin(& - @4) + sin(2h)l + h sin& = 0 
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Table 2. Bragg peak intensity as a function of the magneiic field for j3 = -1 

0.1 0.00197 O.wO98 0.49804 0 
0.2 0.00807 0.00393 0.49203 0 
0.3 0.01938 0.00896 0.48135 0 
0.4 0.06112 0 0 0.93889 
0.5 0.09549 0 0 0.90451 
0.6 0.13751 0 0 0.86249 
0.7 0.18716 0 0 0.81284 
0.8 0.24446 0 0 0.75554 
0.9 0.30939 0 0 0.69061 
1 .o 0.38197 0 0 0.61803 
1 . 1  0.46218 0 0 0.53782 
1.2 0.55003 0 0 0.44597 
1.3 0.64552 0 0 0.35448 
1.4 0.74865 0 0 0.25135 
1.5 0.86376 0.00120 0.06692 0 
1.6 0.96304 0 . W  0.01840 0 
1.6363 1 0 0 0 

"' 

h 

F i w  5. The order parameters a given by (2.12) and (2.13) at T = 0: nehld mu15 continuws 
curve; the shap of the samc parameten in the absence of the spin-flop wansition. &nrA CUNC. 

(1 + 2 j z ) [ s i n ( ~ - - ~ ) + s i n ( 4  -@a)]+ j 3 [ s i n ~ + s i n ( 4 + ~ 4 ) ] t h s i n ~ = O  (2.16) 

(1 + 2h) [sin(244) + sin(4.1 - @dl + j 3  Isid44 - h) + sin(44 +&dl + h sin44 = 0. 
(2.17) 

In table 3 we give the energy (2.14) for the helix with seven spins per cell and the c m g y  
(2.5) for the spin-flop phase with j ,  = -0.125. As one can see the spin-flop phase intervenes 
in the range 0.152 < h < 1.767. The jumps in the magnetization are 0.032 and 0.002, 
respectively. This result strongly suggests that the behaviour we have found for Q I 4a/5 
is not an accident when Q is large enough. 
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Table 3. A comparison between the energy (e?) of the helix phase wim seven spins per unit 
cell and lhe energy (efS") of the spin-Hop phase as a function of the extemal magnetic field for 
j 3  = -&, 

0 -1.202936 -1.uM484 
0.1 -1.7.@4634 -1.203259 
0.2 -1.209916 -1211584 
0.3 -1.219450 -1.225546 
0.4 -1.234402 -1.244881 
0.5 -1.255834 -1.269854 
0.6 -1.284234 -1.300377 
0.7 -1.319606 -1.336449 
0.8 -1.361686 -1.378071 
0.9 -1.410126 -1.425242 
1.0 -1.464605 -1.477963 
1.1 -1.57.4888 -1.536234 
1.2 -1.590819 -1.600054 
1.3 -1.662301 -1.669424 
1.4 -1.739259 -1.744343 
1.5 -1.821618 -1.824812 
1.6 -1.909270 -1.910831 
1.7 -2.002023 -2,002399 
1.8 -2.099525 -2.099517 
1.8068 -2.106357 -2.106357 

3. Monte Carlo simulation 

In figure 2 diamonds and crosses show the uniform magnetization mo for T = 0.2 and 
T = 0.35, respectively, as obtained by a MC simulation on a sample of 25 x 25 spins with 
periodic boundary conditions. The initial lo '  M c  steps are discarded for thermalization, 
then runs of lo' MC steps have been made for any value of the magnetic field. As one 
can see the direct observation by MC simulation at finite temperature of the magnetization 
jumps obtained analytically at T = 0 is hopeless. However, we can obtain the signature 
of the distorted-helixspin-flop phase transition evaluating the static structure factor by MC 
simulation on a sample of 50 x 50 spins, where the initial 4 x lo' MC steps have been 
discarded for thermalization, and runs of 2 x IO4 M c  steps are performed to obtain the static 
structure factor. In figure 6 the change of the magnetic cell when the magnetic field is 
increased from h = 0.3 to h = 0.5 is shown at T = 0.05. The transfer of weight from 
the peak at q = (41r/5,0) to q = (n, 0) is clearly seen as expected on the basis of the 
results obtained at T = 0 in section 2. We stress that the occurrence of the spin-flop phase 
is indicated by the appearance of the peak at q = (n, 0) to coincide with the disappearance 
of the peak at q = (4nj5,O). No discontinuity in the magnetization can be observed at 
temperature T = 0.05. Indeed the square root of the intensity of the peak at q = (0,O). 
that is, the uniform magnetization, changes continuously also for the 50x50 spin sample. 

In principle an analogous phenomenon should occur when the field is changed from, 
say, h = 1.4 to h = 1.5, because a first order spin-flopfan phase transition occurs at T = 0. 
However in this range of fields the substantial peak is at p = 0 because the spins are nearly 
collinear and the magnetization is almost saturated. Moreover thermal fluctuations make 
hard to pick out the modulation of the five spins in the unit cell of the helix phase as well 
as that of the two spins in the unit cell of the spin-flop phase. As one can see from table 2, 
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h=0.3 

m 
h=0.3 

~~ 0.1 0.0 0 1 2 3 

h=0.5 

0.3 

0.2 

0.1 

0.0 
0 1 2 3 

e 91 

Figure 6. The static structum factor S(q,. 0) at T = 0.05 for h = 0.3 (helix p h w )  and h = 0.5 
(spin-flop phase). 

even at T = 0 the intensities of the peaks at q = (4r/5,0) and at p = (r, 0) appear to be 
very weak. 

4. Summary and conclusions 

We have shown that a magnetic field induces discontinuous phase transitions between 
modulated spin configurations with different magnetic cells in continuous symmetry spin 
models. In particular, we have found this phenomenon in a square planar model with 
competing interactions up to thud-nearest neighbours when the zero-field-zero-temperature 
configuration is a helix characterized by a wave vector Q = ($7.0). Indeed we have found 
that the elementary excitation energy of the distorted helix and fan configurations becomes 
negative at the zone boundary in an intermediate range of magnetic fields. This is the 
signature of the occurrence of an intermediate phase with two spins per unit cell, which 
we have identified as a spin-flop phase. This fact escaped a previous analysis based on the 
evaluation of the zero temperature energy of the model with the assumption that the size of 
the unit cell was unaffected by the field 161. This approach suggests a first-order helix-fan 
phase transition when Q c x /2 ,  and a continuous distortion from the low-field helix to the 
high-field fan configuration when Q > r / 2 .  Since MC simulations were performed on a ZD 
sample of 25x25 spins 181 not suitable for describing dimerized phases and at too high a 
temperature, we carefully re-examined such numerical calculations and found a trace of the 
spin-flop phase in the static structure factor, performing an MC simulation on a sample of 
50 x 50 spins as shown in figure 6. However, no evidence of the spin-flop phase is found in 
the uniform magnetization as a function of the field (see figure 2)  where the discontinuities 
are small even at zero temperature. We stress that the scenario we find for Q = 431./5, 
that is the existence of three commensurate phases before reaching the saturated phase, is 
qualitatively similar to that found in the planar triangular antiferromagnet [9-11] and in the 
square lattice with proper competing interactions [12], where distorted-helix. ‘upupdown’, 
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and asymmebic fan configurations exist in addition to the saturated phase [9-111. However, 
the intermediate upupdown phase is stabilized only by thermal fluctuations whereas the 
spin-flop phase is present even at zero temperature over a wide range of magnetic fields 
in the model we consider here. We think that the Occurrence of the spin-flop phase in the 
intermediate range of fields should be a general rule of the helix configuration with large 
enough Q .  Indeed we have studied the minimum-energy configuration at zero temperature 
for exchange competition supporting a magnetic cell with seven spins in the square planar 
model. The discontinuous transition from the Q = 6z/7 helix to the spin Bop phase and 
from the latter to the symmetric fan is confirmed. 

Appendix 

When small deviations from the minimum-energy configurations are accounted for in 
Hamiltonian (2.1). we obtain an expansion in which 71, contains the product of n deviations. 
The zero order term is the minimum-energy configuration. The first-order term vanishes 
because of the minimum conditions. If we restrict ourselves to the second-order term 
(harmonic approximation) we have 

71 = 710 + 712 (AI) 

where 

(U) (H) 'HO = Eo 

for the five-sublattice helix or fan configuration, and 

(SR XI Eo 
2 

(S) SS' 
712 = 7 4  @-& +id' 

I.s'=l p 

for the spin-flop phase. +!) are the spatial Fourier transforms of @,?), which are the small 
deviations the sth spin in the ith magnetic cell makes with respect to the minimum-energy 
configuration. E r )  and E f D  are given by (2.4) and (2.5), respectively. 

The elements A$ of the hermitian matrix A, are given by 

(A6) 
h 

A: = l - c o s q , +  j ~ ~ ~ + ~ ~ c ~ s ~ + + ~ [ ~ - ~ ~ s ~ ~ q , ~ + c ~ s ~ ~ ] + -  2 

A? = 1   COS^, + 4 j 3 ( & +  1)[ cos(#2 - &) +COS#*] 

h + j3{1 - c o s ( ~ ~ ) + ~ [ c o s ( ~ + & ) + c o s ( 2 ~ ) 1 ] + ~ c o s ~  (A7) 

  COS(^^)] A: = I - cosq, + f j3(&+ I)[ COS(& - 
h + j , {  1 - cos(2qY) + f [cos(~Z +&I + cos~31)  + ; cosh  (-48) 
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A: = A33 
q 

'I- 4 
A 5 5  - A" 

A: =-+e"scosh[l -cosq,+ j 3 ( J 3 +  1)cosq,] 

A, =-$e  j 3 C O S 4 3  13 I Zq,. 

AF = (A:)* 

AY = (A;)* 

A: = -$e'qXcos(& -&)[I - cosq, + j3(2/5+ I)cosqyl 

AY = -le 13 cos(& + +d 
AY = -Ze -'pi j 3  cos(?& 

I lip, , 

AY = - $ e ' q z ~ ~ ~ ( 2 & ) [ 1    COS^, + j3(&+  COS^,] 
A35 - A" 

,445 - A" 
I ] -  9 

q -  9 

where $2 and $3 are the solutions of (22) and (2.3). 
The elements E:' of the hermitian matrix B, are given by 

B A ' =  l -cosqy-  j 3 ( & + 1 ) +  j ~ [ 2 - ~ 0 ~ ( 2 q , ) - c o s ( i ? q , ) ]  ( M I )  

= -cos(2~)cosq,[l -cosq, + js(&+ l)cosqy] (A23 

where 4 is given by (2.6). The elementary excitation energies are given by 

Ti@, = 2J# (A23 

where A, are the eigenvalues of the matrix A, for the helix phase and of the matrix 9, for 
the spin-flop phase. Five branches are found in the fust Brillouin zone of the helix or fan 
phase (0 c qx c x / 5 ,  0 c qy c n); two branches are found in the first Brillouin zone of 
the spin-flop phase (0 < qx c a /2 .0  < qy c n). 
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